PREVENÇÃO PRIMÁRIA E SECUNDÁRIA DAS DOENÇAS CARDIOVASCULARES: EVIDÊNCIAS E DESAFIOS ATUAIS

Gerson Barbosa do Nascimento;
Aristocles Lima Oliveira;
Elio de Paula Assis Martins;
Josielle Helainy Luiz da Silva;
Luiz Aurélio Braga Pereira;
Patricia Bobek;
Carolina Vaz da Costa;
Edson Machado Sirai Missugiro;
Frederico Paraguai Sampaio;
Taiane Belinati Loureiro Kubrusly

Resumo As doenças cardiovasculares (DCV) permanecem como a principal causa de mortalidade no mundo, representando um grave problema de saúde pública. Nesse contexto, as estratégias de prevenção primária e secundária são fundamentais para reduzir a carga dessas enfermidades, melhorar a qualidade de vida dos pacientes e diminuir os custos associados ao tratamento de eventos cardiovasculares agudos. A prevenção primária visa identificar e controlar fatores de risco em indivíduos assintomáticos, com o objetivo de evitar o desenvolvimento das DCV. Modificações no estilo de vida, como alimentação saudável, prática regular de atividade física, cessação do tabagismo e controle do estresse, associadas ao manejo adequado de condições como hipertensão arterial, dislipidemias e diabetes mellitus, são intervenções eficazes. A adoção precoce dessas medidas pode retardar ou impedir a progressão da aterosclerose e outras condições cardiovasculares. Por sua vez, a prevenção secundária se destina a pacientes que já sofreram eventos cardiovasculares, como infarto agudo do miocárdio ou acidente vascular cerebral, ou que apresentam doença arterial coronariana estabelecida. O objetivo é evitar recorrências, reduzir complicações e melhorar a sobrevida. Nessa fase, além da continuidade das mudanças no estilo de vida, é essencial a prescrição racional de fármacos como antiplaquetários, betabloqueadores, estatinas, inibidores da ECA ou bloqueadores dos receptores da angiotensina II, sempre conforme as diretrizes clínicas. Os cardiologistas desempenham papel central na educação dos pacientes e na implementação dessas estratégias, sendo agentes essenciais na promoção da saúde cardiovascular. Portanto, fortalecer as ações de prevenção primária e secundária é imperativo para reduzir a incidência e a mortalidade por doenças cardiovasculares, com impacto direto na saúde populacional e na sustentabilidade dos sistemas de saúde.

Palavras-chave: Doenças cardiovasculares. Fatores de risco. Estilo de vida. Atenção primária à saúde. Reabilitação cardiovascular

1. INTRODUÇÃO

A doença cardiovascular (DCV) abrange doenças coronárias, doenças cerebrovasculares, doenças arteriais periféricas, doenças cardíacas reumáticas e congênitas e tromboembolismo venoso. Coletivamente, são responsáveis por 17,9 milhões de mortes por ano em todo o mundo – o correspondente a 31% de todas as mortes, sendo a doença cardíaca isquêmica (DIC) responsável pela maior parte delas¹. Apesar da queda na proporção de mortes relacionadas a DCVs nas últimas décadas, enquanto a taxa de declínio está diminuindo, a morbidade está aumentando².

A capacidade de identificar pessoas em risco de DCV permite alterar os fatores de risco por meio da prevenção primária e, sempre que necessário, pela prevenção secundária. Há uma série de fatores que afetam o risco de uma pessoa desenvolver DCV, incluindo idade avançada, gênero, histórico familiar e etnia, que são não modificáveis. Porém, fatores relacionados ao estilo de vida e às intervenções farmacológicas – que demonstraram afetar o risco de DCV – são modificáveis, a exemplo de hipertensão, obesidade, tabagismo, dieta, exercícios, níveis de colesterol, consumo de álcool e controle do diabetes mellitus³.

2. AVALIAÇÃO DE RISCO

A modificação do risco cardiovascular depende da compreensão da carga de risco individual subjacente. Muitas intervenções recorrem aos métodos de estratificação de risco para orientar seu momento e intensidade. Por isso, o uso de ferramentas de avaliação de risco validadas na prevenção primária de DCV é reconhecido pelas diretrizes da European Society of Cardiology (ESC) e do American College of Cardiology (ACC)/ American Heart Association (AHA)⁴⁻⁷.

Nesse caso, as diretrizes da ESC recomendam o uso da ferramenta de avaliação de risco SCORE^{4,5}, enquanto as diretrizes da ACC/AHA orientam o uso da ferramenta de avaliação de risco de doença cardiovascular aterosclerótica (DCVA) atualizada^{6,7}, ambas disponíveis online como calculadoras de risco simples. O motivo da discrepância nos métodos de cálculo de risco se refere à validação dessas ferramentas. Enquanto a ferramenta de avaliação de risco de DCVA usa conjuntos de dados de pacientes americanos, o gráfico de risco SCORE utiliza dados europeus, podendo ser atualizado de acordo com as estatísticas de mortalidade de cada país europeu⁴⁻⁷.

Ambas as diretrizes orientam o uso de calculadoras de risco alternativas em populações específicas, com riscos de DCV alterados. A calculadora de DCVA foi projetada e validada apenas para uso em pacientes com idade entre 40 e 79 anos e o gráfico de risco SCORE foi derivado de pacientes com menos de 80 anos, sendo a versão online projetada para uso em pacientes com idade entre 40 e 65 anos⁴⁻⁷. Atualmente, há uma variedade de ferramentas alternativas de avaliação de risco, projetadas e validadas para uso em grupos populacionais mais restritos, incluindo pacientes diabéticos e idosos^{8,9}. Todas essas ferramentas fornecem uma medida quantificada de risco, na forma de risco cardiovascular em 10 anos ou mortalidade por DCV em 10 anos. É com base nessas estimativas de risco que se busca modificar os fatores de risco e reduzir a carga da DCV⁴⁻⁷.

3. MUDANÇAS NO ESTILO DE VIDA

3.1 Prática de exercício físico

O exercício continua sendo recomendado para a redução do risco de DCVs, o que é consistente com seus efeitos positivos para uma ampla variedade de condições de saúde¹⁰. As maiores reduções em eventos cardiovasculares graves são observadas no início do exercício, com aumentos em seus níveis proporcionando benefícios adicionais¹¹. Evidências limitadas consideram a hipótese de que níveis extremos de exercício aumentam o risco de DCVA. Algumas evidências, no entanto, sugerem um risco aumentado de outras condições cardíacas, como a fibrilação atrial. A maioria das evidências indicam que o exercício regular é extremamente benéfico para a população em geral, onde os benefícios superam os riscos¹².

Em relação às recomendações, a ESC orienta a combinação de exercícios aeróbicos e de força, com pelo menos 150 minutos de exercícios aeróbicos de intensidade moderada ou pelo menos 75 minutos de exercícios aeróbicos de intensidade vigorosa, além de pelo menos 2 sessões de fortalecimento muscular por semana^{13,14}. O ACC/AHA, por sua vez, recomendam atividade física para reduzir a pressão arterial (PA) e o colesterol não HDL, em 3 a 4 sessões de 40 minutos de exercícios moderados a vigorosos, com base em meta-análises¹⁵.

As recomendações atuais se baseiam amplamente em expectativas razoáveis de exercício na população em geral, e não em dosagens ideais específicas. Mais pesquisas são necessárias para gerar metas claras e baseadas em evidências para o exercício. O que fica claro a partir das evidências é que o exercício é uma das ferramentas mais poderosas na prevenção primária de DCV¹⁶.

3.2 Dieta saudável

Há um amplo conjunto de evidências observacionais e epidemiológicas que demonstram que mudanças na dieta podem reduzir a morbidade e a mortalidade por DCV. No entanto, a natureza multifacetada da modificação alimentar significa que há evidências limitadas na forma de estudos controlados randomizados (ECRs)². A ESC recomenda uma dieta pobre em gorduras saturadas, com foco em produtos integrais, vegetais, frutas e peixes como base alimentar para a prevenção de DCVs. Recomenda a abstinência de álcool e bebidas açucaradas e a adesão a uma dieta mediterrânea. Todos esses ajustes demonstraram reduzir significativamente o risco de DCVs⁴.

Evidências que relacionam causalmente as gorduras trans produzidas industrialmente com as DCVs são mencionadas pela ESC, que destaca a importância de prevenir o consumo

desses produtos para a saúde cardiovascular¹⁷. As orientações do ACC/AHA são alinhadas com a ESC. A dieta Dietary Approaches to Stop Hypertension (DASH deixou de ser recomendada, pois a ingestão de laticínios foi associada a um aumento nas taxas de mortalidade cardiovascular em comparação com a proteína vegetal¹⁸. A associação agora recomenda dietas mediterrâneas, juntamente com maior consumo de nozes, vegetais, leguminosas, frutas e proteína vegetal ou animal magra (de preferência peixe). Isso se baseia na associação consistente dessas dietas com menor risco de mortalidade por todas as causas do que as dietas de controle ou padrão, observada em estudos observacionais⁶.

3.3 Controle de peso

A obesidade – índice de massa corporal (IMC) ≥30 – e o sobrepeso (IMC ≥25) estão associados ao aumento do risco de DCV, enquanto o IMC de 20 a 24,9 está relacionado à menor mortalidade por todas as causas. Um IMC de ≥25 está diretamente associado ao aumento do risco de hipertensão e diabetes mellitus tipo 2 (DM2), que são fatores de risco conhecidos para DCV. A perda de peso para manter um IMC de 20–24,9 demonstrou reduzir a PA, melhorar o controle glicêmico e, portanto, diminuir outros fatores de risco modificáveis para DCVA¹9,20.

É preciso reconhecer que o IMC é uma ferramenta fácil de usar, mas imperfeita. Frequentemente, ele é usado como um substituto para a circunferência da cintura ou outras medidas mais diretas de adiposidade, que são conhecidas por se correlacionarem negativamente com o risco de DCV²¹. Em indivíduos atléticos e musculosos, por exemplo, é improvável que um IMC elevado se correlacione bem com o risco subjacente e isso deve ser levado em consideração na avaliação de risco do paciente, quando apropriado²².

3.4 Tabagismo e cigarros eletrônicos

O tabagismo continua sendo um dos principais contribuintes para as DCV em todo o mundo. Estima-se que 1 bilhão de pessoas fumem em todo o mundo, e 12% das mortes relacionadas às DCV são atribuíveis ao uso do tabaco²³. Não existe um nível seguro de tabagismo, e considera-se que até mesmo o tabagismo passivo aumenta o risco de DCV²⁴. Parar de fumar é a intervenção mais econômica que se pode adotar na prevenção primária para reduzir o risco de DCV. Portanto, todas as diretrizes recomendam a cessação do tabagismo⁴.

Farmacoterapias como a terapia de reposição de nicotina (TRN) e a bupropiona (um inibidor da recaptação da dopamina e noradrenalina) demonstraram ajudar cerca de 80% mais pessoas a parar de fumar em comparação com o placebo. A vareniclina (um agonista parcial da nicotina) dobra a chance de abstinência e preocupações anteriores sobre uma possível ligação entre a vareniclina e eventos neuropsiquiátricos graves parecem ter sido refutadas^{4,25}. Uma revisão da Cochrane identificou que o aumento do apoio comportamental como complemento à farmacoterapia para cessação do tabagismo provavelmente aumentaria a chance de sucesso em 10 a 20% em comparação com pouco ou nenhum apoio nesse sentido²⁶.

Os cigarros eletrônicos, por sua vez, são dispositivos alimentados por bateria que simulam o ato de fumar, aquecendo nicotina, entre outras substâncias químicas, em um vapor que é inalado. Dados disponíveis sobre seu uso sugerem que eles são menos cardiovasculopáticos do que os cigarros tradicionais, mas ainda há potencial para aumento do risco de DCV. Esses efeitos são mediados por aumentos na inflamação, agregação plaquetária e arritmogênese, entre outras vias^{27,30}.

3.5 Consumo de álcool

Há controvérsia quanto ao suposto benefício do consumo leve a moderado de álcool no risco de DCV, apesar das evidências que relacionam o consumo de álcool acima dos limites atuais e o aumento do risco de DCV³¹. Existem estudos epidemiológicos que relacionam o consumo leve a moderado com a redução do risco de DCV³², porém Holmes et al³³ contestam essa suposição em sua meta-análise, ao descobrirem que o perfil de risco de DCV é significativamente menor naqueles estudados com um polimorfismo de nucleotídeo único na enzima álcool desidrogenase, que predispõe o indivíduo a consumir menos álcool.

Eles sugerem que os efeitos cardioprotetores do álcool encontrados em estudos observacionais anteriores podem ser devidos a vieses de seleção ou de confusão³³. A ESC cita especificamente esse estudo em sua justificativa para limitar o consumo de álcool sem um limite seguro recomendado⁴. O ACC/AHA, por sua vez, recomenda um limite diário de 1 ou 1 a 2 doses/dia para mulheres e homens, respectivamente, embora as evidências pareçam demonstrar que, se houver qualquer efeito cardioprotetor putativo, é provável que ocorra em níveis inferiores a esse³⁴.

4. TERAPIAS MEDICAMENTOSAS

4.1 Terapia hipolipemiante

Lipídios são moléculas vitais para uma variedade de processos fisiológicos, incluindo utilização de energia, produção de hormônios esteroides e formação de ácidos biliares. Lipoproteínas contendo apolipoproteína-B, com diâmetro inferior a 70 nm, podem atravessar as paredes endoteliais, onde podem interagir com estruturas da matriz extracelular, levandoà deposição de lipídios e à ateromagênese, precursoras da DCVA³⁵.

Diversos dados corroboram o fato de que os níveis de colesterol sérico e seus transportadores de lipoproteínas estão causalmente relacionados à DCVA. Estudos epidemiológicos demonstram que populações com níveis mais baixos de colesterol total e não-HDLC apresentam níveis mais baixos de DCVA, e que a exposição a longo prazo a níveis mais baixos de não HDLC, em comparação com a curto prazo, leva a reduções na taxa de DCVA³⁶⁻³⁸. ECRs de medicamentos que reduzem o colesterol também demonstram reduções acentuadas na DCVA sem evidência de uma curva em J³⁹.

Níveis plasmáticos elevados de triglicerídeos estão associados a uma maior taxa de DCVA. Esse efeito pode ser atenuado pela redução medicamentosa dos níveis de TG, embora isso pareça ser mediado por alterações associadas na concentração de lipoproteínas ricas em TG, estimadas por não-HDLC. Recomendações são feitas para outros grupos lipídicos, mas observa-se que os ensaios clínicos não determinaram claramente os níveis-alvo para HDL-C ou TG. No entanto, as evidências a favor de uma redução mais agressiva do LDL-C estão aumentando³⁵.

Os níveis de HDL-C estão inversamente associados à DCVA, o que é observado em estudos epidemiológicos. Porém, os ECRs não demonstraram efeito benéfico no aumento dos níveis de HDL-C, na alteração da progressão da aterosclerose nem nas taxas de DCVA³⁹⁻⁴¹. Assim, nem as diretrizes do ACC/AHA nem da ESC recomendam níveis-alvo nem intervenções para essas moléculas. Em vez disso, sugerem seu uso para auxiliar na estratificação de risco individual de pacientes, especialmente naqueles com LDL-C iatrogenicamente reduzido, visto que níveis elevados de triglicerídeos, ApoB e HDL-C reduzidos podem indicar risco persistente de DCV^{35,42}.

Em relação ao controle do colesterol, as diretrizes da ACC/AHA⁴³ e da ESC⁴⁴ recomendam metas de colesterol sérico mais baixas. As orientações para intervenção e níveis-alvo ideais de colesterol sérico na prevenção primária se baseiam na avaliação de risco de cada paciente. Isso pode ser realizado utilizando uma variedade de ferramentas de estratificação de risco disponíveis, incluindo o sistema SCORE ou o QRISK3 recomendados pela ESC^{4,44}.

Tabela 1 – Comparação das metas de colesterol, segundo as diretrizes da ESC e da ACC/AHA.

Tabela 1 - Comparação das metas de colesteror, segundo as diretifizes da EGO e da AGO/AFIA.					
ESC					
Perfil de risco	Baixo	Alto	Muito alto		
Meta de LDL-C	<3,0 mmol/L	<2,6 mmol/L/redução de 50%	<1,8 mmol/L		
AHA/ACC					
Perfil de risco	<5%-7,49% de risco em 10 anos	Risco de 7,5– 19,9% em 10 anos	≥20% de risco em 10 anos		
Meta de LDL-C	Discutir o uso de estatinas, se apropriado	Redução de 30–49%	≥50% de redução		

As diferenças entre os dois grupos-alvo são reconhecidas nas diretrizes da ESC como não tendo sido confirmadas por evidências de ECR, observando a interferência de níveis-alvo de meta-análises e análises mendelianas, que demonstram a redução persistente no risco de DCVA com níveis mais baixos de LDL-C³⁵. Para atingir essas metas, após as intervenções adequadas no estilo de vida existe uma variedade de medicamentos recomendados. A terapia

principal e de primeira linha em longo prazo nas diretrizes da ESC e do ACC/AHA para prevenção primária continua sendo as estatinas, que têm se mostrado eficazes na redução do colesterol sérico, com correlação entre a redução absoluta do LDL e a redução do risco de DCVA. Os principais valores incluem uma redução de 20 a 25% nos eventos cardiovasculares adversos maiores (MACE) e de 10% na mortalidade por todas as causas ao longo de 5 anos, por redução de 1 mmol/L no LDL- \mathbf{C}^{45} .

Para aqueles com intolerância a estatinas, inibidores da absorção de colesterol, como a ezetimiba, permanecem como segunda linha nas diretrizes da ESC e são recomendados para uso em adição às estatinas, quando os valores-alvo não podem ser alcançados devido a evidências de um efeito aditivo em relação às estatinas com tolerância máxima. As diretrizes da ESC também recomendam seu uso como monoterapia, quando as estatinas não podem ser toleradas devido a inferências de seu uso como terapia adicional^{46,47}.

Considerados uma nova terapia na iteração anterior, os inibidores da proproteína convertase subtilisina/kexina tipo 9 (PCSK9) demonstraram reduzir os níveis de LDL-C e o risco cardiovascular como parte da prevenção secundária em indivíduos de alto risco e, em parte, impulsionaram parte da narrativa a respeito de níveis séricos de LDL-C ainda mais baixos. Seu uso, até o momento, foi recomendado apenas para prevenção primária em pacientes com risco elevado, devido à hipercolesterolemia familiar e à falta de dados de qualidade e de resultados de longo prazo para seu uso em grupos de prevenção primária. O efeito da redução do colesterol é observado em períodos de tempo mais longos, portanto, com mais dados longitudinais e possíveis mudanças no preço, sua inclusão nas recomendações de prevenção primária é algo que pode mudar entre as diretrizes atuais e as subsequentes^{48,49}.

Na mesma linha, o inclisiran é um medicamento desenvolvido para interferir na tradução da PCSK9. Estudos de fase três ainda não foram relatados para seu uso em hipercolesterolemia familiar, mas os resultados iniciais demonstram uma redução substancial e significativa do LDL-C nesses pacientes. Ainda não há dados sobre seu uso na prevenção primária, mas isso pode ocorrer nos próximos anos, com dados mais amplos do grupo de prevenção primária e longitudinais nas populações de prevenção secundária e de risco alto⁵⁰.

Embora a redução do LDL-C continue a ser um benefício claro em pacientes idosos com DCVA conhecida, ainda há discussão sobre o propósito e o benefício da redução do colesterol na prevenção primária. Naqueles acima de 75 anos, parece que em indivíduos de baixo risco há pouca evidência para apoiar um benefício individual, e mesmo em grupos de alto risco em idades mais avançadas, essa evidência parece desaparecer completamente, como visto em estudos de coorte retrospectivos e ECRs prospectivos⁵¹⁻⁵³.

4.2 Hipertensão

A hipertensão continua sendo reconhecida como um dos principais contribuintes para o risco cardiovascular, sendo considerada a principal contribuinte para a morte prematura global e responsável por mais mortes por DCV do que qualquer outro fator de risco modificável^{54,55}. Meta-análises demonstraram redução do risco de DCV com diminuição na pressão arterial sistólica (PAS). Lewington et al⁵⁶ demonstraram uma duplicação do risco de DCV com cada aumento de PAS de 20 mmHg e aumento de PAD de 10 mmHg, em pacientes com PA de <115 a ≥180 mmHg. essa reação linear contínua foi observada em todas as idades e grupos étnicos⁵⁶⁻⁵⁹. Existe atualmente um acordo entre as diretrizes europeias e americanas em termos de como diagnosticar e tratar a hipertensão, embora existam algumas discrepâncias em termos de valores de corte de tratamento e PAs-alvo^{60,61}.

Tabela 3 – Comparação entre as diretrizes ACC/AHA e ESC/ESH para tratamento da hipertensão.

Parâmetro		ACC/AHA	ESC/ESH
Pressão arterial	130– 139/80–89	Risco de DCV em 10 anos <10% – Intervenções no estilo de vida Risco de DCV em 10 anos ≥10% – Tratamento farmacológico	Nenhuma recomendação de tratamento em prevenção primária

140-	Tratamento	Risco baixo-
159/90–99	farmacológico	moderado de DCV em
		10 anos – Intervenções
		no estilo de vida, se não
		forem eficazes em 3-6
		meses, então
		tratamento
		farmacológico. Risco
		alto de DCV em 10
		anos/doença renal
		crônica/dano de órgão
		hipertensivo –
		Tratamento
		farmacológico.
>160/100	Tratamento	Tratamento
	farmacológico	farmacológico

O diagnóstico e o monitoramento da PA são recomendados por meio de aferições automatizadas repetidas no consultório, monitorização ambulatorial ou domiciliar. A monitorização domiciliar e ambulatorial demonstrou melhor correlação com lesões em órgãosalvo hipertensivos e pode auxiliar na redução do tratamento excessivo da hipertensão do avental branco^{62,63}. Utilizando os resultados dessas aferições da PA, ambas as diretrizes recomendam o uso das calculadoras de risco cardiovascular para avaliar a necessidade e a intensidade da terapia anti-hipertensiva^{4,5}.

Sobre quando tratar, as diretrizes europeias e americanas concordam nas faixas superiores de PA. Nos casos de PA >160/100, ambas as diretrizes recomendam o tratamento com intervenção farmacológica. Também citam os benefícios comprovados das terapias antihipertensivas em pacientes de risco moderado a alto, com PAS >130 mmHg e PAD >80 mmHg^{64,65}, e em qualquer paciente com hipertensão grave (PAS ≥ 180/PAD ≥ 110), sendo nesta última eque a intervenção demonstrou ser benéfica, independentemente do risco de DCV avaliado⁶⁶.

A principal discrepância ocorre em níveis mais baixos de PA. Em PAs de 130-139/80-89, as diretrizes da ESC/European Society of Hypertension (ESH) recomendam intervenções no estilo de vida e a consideração do tratamento farmacológico apenas em pacientes de alto risco com DCV preexistente, particularmente doença arterial coronariana⁶⁰. Por outro lado, o ACC/AHA recomenda estratificar esses pacientes usando uma calculadora de risco e intervir farmacologicamente naqueles com risco ≥10% ao longo de 10 anos, ao mesmo tempo em que incentiva intervenções no estilo de vida se <10%⁶¹.

A terapia anti-hipertensiva não é considerada para todos os pacientes com metas mais baixas, devido à ausência de evidências que sustentem seu uso. Avaliar o risco de DCV permite direcionar os pacientes que terão um benefício clínico claro e uma boa redução do risco relativo^{67,68}. As diretrizes da ESC recomendam tentativas iniciais de gerenciamento do estilo de vida em pacientes com risco cardiovascular baixo a moderado, antes da mudança para terapia farmacológica. Para aqueles com alto risco, ou com doença renal crônica preexistente ou lesão orgânica mediada por hipertensão, recomenda-se terapia farmacológica imediata, enquanto o ACC/AHA recomenda intervenção farmacológica para todos os pacientes com PA >140/90^{60,61}.

A diferença entre o momento recomendado do tratamento farmacológico decorre da avaliação do benefício relativo da intervenção em níveis mais baixos. As diretrizes da ACC/AHA citam meta-análises e os dados do Systolic Blood Pressure Intervention Trial (SPRINT), que demonstram redução do risco de DCV ao tratar níveis mais baixos de PA, enquanto o grupo ESC/ESH considera os ganhos na redução do risco de DCV obtidos pela intervenção nos níveis mais baixos como marginais, com um aumento de eventos adversos, conforme evidenciado pelo mesmo estudo⁶⁹.

Enquanto as diretrizes americanas citam a evidência de aumento do risco relativo entre PAS < 120 a 130-139, as diretrizes europeias apontam para a falta de evidência de redução de risco ao tratar aqueles com PA <140. Ambos os grupos concordam que o uso de calculadoras de risco de DCV deve ajudar a direcionar o tratamento para aqueles com maior risco, mas a discrepância nos limites de tratamento parece uma questão de opinião consensual sobre risco/benefício da terapia em níveis mais baixos^{70,71}.

Em relação às PAs alvo, uma curva em forma de J em eventos cardiovasculares a partir de ensaios observacionais foi sugerida, mas há preocupações sobre variáveis de confusão e não há dados que sustentem isso em ECRs⁷². Fisiologicamente, deve haver uma PA subótima na qual a perfusão sistêmica fica comprometida, mas esse nível permanece delineado de forma insatisfatória. A meta-análise sugere que a redução mais agressiva da PAS e da PAD leva a uma redução adicional em eventos cardiovasculares, enquanto os níveis alvo atuais são amplamente baseados em evidências do ensaio SPRINT, que demonstrou uma taxa aumentada de efeitos colaterais hipotensores quando metas intensivas de PAS de <120 foram definidas em comparação com <140^{69,73}.

A diferença nas prioridades de risco/benefício é novamente observada na abordagem para o estabelecimento de metas de PA em pacientes idosos. A ESC sugere metas de PA mais altas, de <140/90, para compensar o aumento da taxa de efeitos adversos observados ao buscar metas de PA mais baixas em idosos, enquanto a AHA recomenda metas mais baixas, de <130/90, devido ao benefício cardiovascular percebido nessa população^{60,61}. Ambas as diretrizes concordam com o uso de terapia combinada em pacientes com PA ≥20/10 mmHg acima da meta de PAS, devido à evidência do efeito sinérgico das terapias anti-hipertensivas⁷⁴.

A recomendação contínua do betabloqueador como agente anti-hipertensivo nas diretrizes da ESC/ESH se mantém como ponto de discórdia, com as diretrizes ACC/AHA argumentando que uma revisão Cochrane demonstra que não há evidências de redução de risco secundária ao seu uso. Considera-se sua utilidade em certos pacientes, especificamente aqueles com comorbidades que podem se beneficiar de seu uso, como insuficiência cardíaca com fração de ejeção reduzida ou doença cardíaca isquêmica. Por outro lado, permanece o consenso quanto ao uso de anti-hipertensivos específicos, com inibidores da enzima conversora de angiotensina, bloqueadores dos receptores da angiotensina, bloqueadores dos canais de cálcio e diuréticos tiazídicos, todos como opções de primeira linha, isoladamente ou em combinação⁷⁵.

4.4 Diabetes mellitus

O diabetes mellitus (DM) é um fator de risco reconhecido para DCV, agrupado com hipertensão e dislipidemia para caracterizar a síndrome metabólica. Embora alguns estudos tenham tido dificuldade em demonstrar significância, meta-análises demonstraram que o tratamento intensivo do DM e a manutenção do controle glicêmico adequado reduzem o risco de DCV, com diferenças na significância estatística — possivelmente devido a tempos de acompanhamento curtos. Há evidências de aumento do risco de DCV com DM de longa duração e aumento da taxa de eventos com a carga glicêmica⁷⁶.

Como ocorre com quase todas as condições médicas, mudanças no estilo de vida podem produzir mudanças na carga da doença e têm sido causalmente relacionadas à redução da DCVA. Por isso, devem ser recomendadas a todos os indivíduos com DM como opção de primeira linha, com a metformina como opção medicamentosa. O uso de metformina leva a reduções nos níveis de hemoglobina glicada (HbA1C) e nas taxas de DCV, mas é inferior às terapias anti-hipertensivas e hipolipemiantes em relação à redução de risco relativo e absoluto⁷⁶. O controle intensivo da HbA1C demonstrou ser benéfico na redução de DCV, embora dados sugiram que isso seja mais eficaz em populações mais jovens, com diagnósticos recentes, em comparação com pacientes mais velhos nos quais esse risco já está presente há algum tempo^{77,78}.

Embora necessária no DM1, a justificativa cardiovascular para o uso de insulina no DM2 gera controvérsias. Mesmo conhecida por melhorar a HbA1C e, portanto, melhorar o risco macrovascular, ela pode contribuir para a aterogênese, causar ganho de peso, aumentar o risco de hipoglicemia e, devido ao aumento da retenção de sódio, pode piorar a congestão sistêmica e a insuficiência cardíaca⁷⁹. Não houve ECRs significativos que descrevam seu perfil de segurança para DCV, enquanto toda a preocupação com seu potencial de dano decorreu de meta-análise de estudos observacionais, com consequentes falhas^{79,80}. Seu uso hoje é baseado em sua capacidade de reduzir a exposição sistêmica à glicose, com evidências demonstrando que um controle glicêmico mais rigoroso leva a uma melhora significativa do risco de DCV⁷⁶.

Tanto as diretrizes da ESC quanto do ACC/AHA recomendam a metformina como primeira linha, enquanto as diretrizes da ESC considerem o uso dos inibidores de SGLT2, devido a evidências de seu perfil benéfico nesta coorte. O surgimento dos inibidores do transportador de sódio-glicose 2 (SGLT2) para o tratamento do diabetes causou a redução do risco de DCV. Ensaios de desfechos cardiovasculares para SGLT2s demonstraram não apenas segurança, mas também melhores desfechos cardíacos, além das mudanças no controle glicêmico^{81,82}.

Grande parte de seu potencial cardioprotetor foi relacionada à redução em mortes por insuficiência cardíaca e hospitalizações em oposição a DCV⁸³. Evidências sugerem que eles podem ter um uso na prevenção primária e secundária de DCV, embora seu uso em pacientes sem DM ainda não esteja claro⁸⁴. Semelhantemente aos SGLT2s, os ensaios de desfechos cardiovasculares da classe do peptídeo semelhante ao glucagon-1 (GLP-1) demonstraram um efeito cardioprotetor para alguns membros da classe, como liraglutida, semaglutida, albiglutida e dulaglitida⁸⁵.

Ao contrário dos inibidores de SGLT-2, a redução dos desfechos cardiovasculares negativos é observada com a redução das complicações macrovasculares. Embora isso não tenha sido demonstrado como um efeito de classe, as diretrizes da ESC recomendam que, no DM2 com alto risco de DCV, os antagonistas de SGLT-2 e os agonistas de GLP-1 com benefícios cardiovasculares comprovados sejam considerados primeira linha, mesmo antes da metformina⁸⁶.

4.5 Polipílula

As polipílulas que foram avaliadas para seu uso na prevenção primária de DCV geralmente contêm uma combinação de um anti-hipertensivo e um agente redutor de colesterol. Embora inferior à terapia médica otimizada, parece haver uma aplicação em populações de pacientes de difícil acesso, além de pacientes em que a adesão é uma preocupação conhecida. Nesse caso, os comprimidos combinados demonstraram reduzir o risco de DCV em populações de difícil acesso, especificamente em países de baixa a média renda e grupos menos propensos a buscar cuidados primários de saúde^{87,88}. Nem a ESC nem o ACC/AHA recomendam seu uso, principalmente no lugar das terapias recomendadas pelas diretrizes ideais, mesmo oferecendo um benefício às populações de pacientes de difícil acesso^{4,35}.

4.6 Antiplaquetários

A oposição ao uso de antiplaquetários para prevenção primária tem se fortalecido. Evidências de ensaios clínicos randomizados (RCTS), incluindo ARRIVE, ASPREE e ASCEND, demonstraram os efeitos deletérios do uso de aspirina para prevenção primária, sem redução substancial de DCV, mas com aumento significativo de sangramentos graves⁸⁹. Como resultado, sua prescrição generalizada para prevenção primária de DCV deve ser evitada⁹⁰. O ASCEND sugeriu que a aspirina pode reduzir eventos de DCV em pacientes com DM bem controlado, mas com um aumento corolário de eventos de sangramento grave de margem semelhante⁹¹.

5. IMPORTÂNCIA DA INTERVENÇÃO DE PREVENÇÃO SECUNDÁRIA

A prevenção secundária visa identificar uma doença antes do início dos sintomas e reduzir o impacto na vida dos pacientes. Embora o conhecimento sobre a variação dos fatores de risco auxilie no processo de triagem, é importante ter uma compreensão das intervenções médicas necessárias para reduzir o impacto da doença.

5.1. Melhoria da qualidade de vida

Nos casos em que a prevenção primária falha, devido a fatores de risco não modificáveis, a prevenção secundária se torna a próxima melhor escolha para manter a qualidade de vida do paciente. A prevenção secundária compreende a identificação de riscos de DCV antes que cause danos permanentes ou crie situações médicas críticas e, consequentemente, leve às intervenções necessárias para reverter os efeitos da doença. Esses tratamentos têm um impacto relativamente baixo em relação às intervenções terciárias. Se um paciente for diagnosticado com risco de DCV, então ele é prescrito para dois tipos de intervenções⁹².

O primeiro tipo são as mudanças no estilo de vida, que causam um impacto mínimo. Em segundo lugar, as intervenções médicas são muito mais acessíveis do que a maioria das intervenções terciárias. Certos procedimentos terciários, como a implementação de marcapasso, exigem cuidados constantes durante toda a vida. Por exemplo, evitar exposição prolongada a campos eletromagnéticos e visitas regulares a profissionais médicos pode interromper certos empregos ou até mesmo a vida regular do paciente. Maior acessibilidade à prevenção secundária facilita o acesso a esses tratamentos para garantir segurança ao paciente. Em procedimentos médicos críticos (prevenção terciária), há casos em que os pacientes procrastinam devido a dificuldades financeiras, colocando sua saúde em perigo⁹².

A prevenção secundária também reduz o fardo socioeconômico do país, assim como o de suas próprias famílias – que, nesse caso, pode ser de curto ou longo prazo. Enquanto os

custos de curto prazo incluem hospitalização, viagens de ambulância e despesas com cirurgia, os de longo prazo correspondem a consultas médicas, testes para monitorar a progressão da doença e medicamentos. Esse efeito pode ser multiplicado devido à falta de produtividade dos pacientes ou caso o paciente morra⁹².

5.2 Intervenções medicamentosas

A dislipidemia é a causa mais comum de DCV, resultando em DCVA. Usada para controlar os lipídios no sangue, as estatinas inibem a criação de colesterol pelo organismo. Elas são frequentemente usadas na prevenção primária, assim como na prevenção secundária. Estudos mostram que esses medicamentos reduzem a taxa de mortalidade em 15 a 20% e eventos cardiovasculares não fatais em um grau ainda maior. Outra causa comum de DCV é a hipertensão, tratada com betabloqueadores. Esses medicamentos reduzem o efeito da adrenalina, diminuindo assim a frequência cardíaca do paciente, e são comumente prescritos para angina, infartos do miocárdio e arritmia. O benefício mais significativo dessas intervenções é que elas são muito mais acessíveis em comparação a procedimentos invasivos, como cirurgia de bypass e substituição de stent na prevenção terciária⁹².

5.3 Intervenções no estilo de vida

Intervenções não medicamentosas para DCV são compostas principalmente de mudanças comportamentais de indivíduos de alto risco. Conforme mencionado anteriormente, a redução de peso é uma das intervenções de estilo de vida mais relevante nesse caso. Considerase manter um peso médio com um IMC entre 18,5 e 24,9. Também é aconselhável manter uma circunferência de cintura inferior a 88 cm para mulheres e inferior a 102 cm para homens, de acordo com a Organização Mundial de Saúde (OMS)⁹².

A redução de sal na dieta também foi prescrita para minimizar o risco de DCV. O sódio causa retenção de água, o que leva a uma pressão arterial mais alta e, consequentemente, a diferentes tipos de DCV, além de comprometimento do sistema renal. Outras mudanças no estilo de vida – que são igualmente importantes na prevenção secundária – correspondem a cessação completa do tabagismo, prática de atividade física, com, por exemplo, 30 a 60 minutos de atividade aeróbica diária, e gerenciamento do estresse⁹².

Restrições alimentares diferem quanto ao fator de risco de DCV. Adultos com risco cardiovascular – devido á presença de lipídios no sangue – devem consumir frutas, vegetais, grãos integrais, aves, peixes e laticínios com baixo teor de gordura, ao mesmo tempo em que precisam limitar o consumo de bebidas adoçadas, doces e carne vermelha. Também é recomendado diminuir a quantidade de calorias de gordura saturada consumidas para 5-6% da ingestão calórica diária. Adultos com PA mais alta são aconselhados a seguir as mesmas restrições alimentares, com níveis mais baixos de sódio. O consumo de álcool, por sua vez, deve ser moderado e sempre que possível moderado⁹².

REFERÊNCIAS

- 1. Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017; 70: 1–25.
- 2. Rabar S, Harker M, O'Flynn N, et al.; Guideline Development Group. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease: summary of updated NICE guidance. BMJ 2014; 349: g4356.
- 3. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364: 937–952.
- 4. Piepoli MF, Hoes AW, Agewall S, et al.; ESC Scientific Document Group. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European association for cardiovascular prevention & rehabilitation (EACPR). Eur Heart J 2016; 37: 2315–2381.

- 5. Conroy RM, Py€or€al€a K, Fitzgerald A, et al.; SCORE Project Group. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003; 24: 987–1003.
- 6. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. J Am Coll Cardiol 2019; 74: 1376–1414.
- 7. Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American college of cardiology/ American heart association task force on practice guidelines. J Am Coll Cardiol 2014; 63: 2935–2959.
- 8. Kengne AP, Patel A, Marre M, et al.; ADVANCE Collaborative Group. Contemporary model for cardiovascular risk prediction in people with type 2 diabetes. Eur J Cardiovasc Prev Rehabil 2011; 18: 393–398.
- 9. Stam-Slob MC, Visseren FL, Jukema JW, et al. Personalized absolute benefit of statin treatment for primary or secondary prevention of vascular disease in individual elderly patients. Clin Res Cardiol 2017; 106: 58–68.
- 10. Ruegsegger GN and Booth FW. Health benefits of exercise. Cold Spring Harb Perspect Med 2018; 8: a029694.
- 11. Lavie C, O'Keefe J, Church T, et al. The role of physical fitness in cardiovascular disease prevention. The Medical Roundtable General Medicine Edition 2020.
- 12. Liu Y, Lee DC, Li Y, et al. Associations of resistance exercise with cardiovascular disease morbidity and mortality. Med Sci Sports Exerc 2019; 51: 499–508.
- 13. Eijsvogels TM, Molossi S, Lee D, et al. Exercise at the extremes: the amount of exercise to reduce cardiovascular events. J Am Coll Cardiol 2016; 67: 316–329.
- 14. NICE. Cardiovascular disease: risk assessment and reduction, including lipid modification. NICE Guideline CG181 2016.
- 15. Eckel RH, Jakicic JM, Ard JD, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American college of cardiology/ American heart association task force on practice guidelines. J Am Coll Cardiol 2014; 63: 2960–2984.
- 16. Nystoriak MA and Bhatnagar A. Cardiovascular effects and benefits of exercise. Front CardiovascMed 2018; 5: 135.
- 17. de Souza RJ, Mente A, Maroleanu A, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 2015; 351: h3978.
- 18. Song M, Fung TT, Hu FB, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med 2016; 176: 1453–1463.
- 19. Wing RR, Lang W, Wadden TA, et al.; the Look AHEAD Research Group. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011; 34: 1481–1486.
- 20. Brown JD, Buscemi J, Milsom V, et al. Effects on cardiovascular risk factors of weight losses limited to 5–10%. Transl Behav Med 2016; 6: 339–346.
- 21. Haffner SM. Abdominal adiposity and cardiometabolic risk: do we have all the answers? Am J Med 2007; 120: S10–S16.

- 22. Van Dijk S, Takken T, Prinsen E, et al. Different anthropometric adiposity measures and their association with cardiovascular disease risk factors: a metaanalysis. Neth Heart J 2012; 20: 208–218.
- 23. Mathers C, Stevens G, d'Espaignet ET, et al. WHO global report: mortality attributable to tobacco. Disponível em: http://hdl.handle.net/1959.13/1408553.
- 24. Law MR and Wald NJ. Environmental tobacco smoke and ischemic heart disease. Prog Cardiovasc Dis 2003; 46: 31–38.
- 25. Anthenelli RM, Benowitz NL, West R, et al. Neuropsychiatric safety and efficacy of varenicline, bupropion, and nicotine patch in smokers with and without psychiatric disorders (EAGLES): a doubleblind, randomised, placebo-controlled clinical trial. Lancet 2016; 387: 2507–2520.
- 26. Hartmann-Boyce J, Hong B, Livingstone-Banks J, et al. Additional behavioural support as an adjunct to pharmacotherapy for smoking cessation. Cochrane Datab Syst Rev 2019; 6: 1465–1858.
- 27. Shields PG, Berman M, Brasky TM, et al. A review of pulmonary toxicity of electronic cigarettes in the context of smoking: a focus on inflammation. Cancer Epidemiol Biomarkers Prev 2017; 26: 1175–1191.
- 28. Hom S, Chen L, Wang T, et al. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations. Platelets 2016; 27: 694–702.
- 29. Nocella C, Biondi-Zoccai G, Sciarretta S, et al. Impact of tobacco versus electronic cigarette smoking on platelet function. Am J Cardiol 2018; 122: 1477–1481.
- 30. Moheimani RS, Bhetraratana M, Peters KM, et al. Sympathomimetic effects of acute E-cigarette use: role of nicotine and non-nicotine constituents. JAHA 2017; 6: e006579.
- 31. Bell S, Daskalopoulou M, Rapsomaniki E, et al. Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: population based cohort study using linked health records. Bmj 2017; 356: j909.
- 32. Mukamal K and Lazo M. Alcohol and cardiovascular disease. Bmj 2017; 356: j1340.
- 33. Holmes MV, Dale CE, Zuccolo L, et al.; InterAct Consortium. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. Bmj 2014; 349: g4164.
- 34. Licaj I, Sandin S, Skeie G, et al. Alcohol consumption over time and mortality in the Swedish women's lifestyle and health cohort. BMJ Open 2016; 6: e012862.
- 35. Authors/Task Force Members, ESC Committee for Practice Guidelines (CPG), ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis 2019.
- 36. Ference BA, Yoo W, Alesh I, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J Am Coll Cardiol 2012; 60: 2631–2639.
- 37. Holmes MV, Asselbergs FW, Palmer TM, et al.; on behalf of the UCLEB consortium. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J 2015; 36: 539–550.
- 38. Silverman MG, Ference BA, Im K, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 2016; 316: 1289–1297.
- 39. Lewington S, Whitlock G, Clarke R, et al.; Prospective Studies Collaboration. Prospective studies collaboration blood cholesterol and vascular mortality by age, sex, and blood pressure: a

- meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 2007; 370: 1829–1839.
- 40. Lincoff AM, Nicholls SJ, Riesmeyer JS, et al.; ACCELERATE Investigators. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med 2017; 376: 1933–1942.
- 41. Bowman L, Hopewell J, Chen F, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. J Vasc Surg 2018; 67: 356.
- 42. Grundy SM. Stone NJ. Bailey AL. et al. 2018 AHA/ guideline on ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/ APhA/ASPC/NLA/PCNA the management of blood cholesterol: a report of the American college of cardiology/American heart association task force on clinical practice quidelines. J Am Coll Cardiol 2019; 73: e285-e350.
- 43. Mach F, Baigent C, Catapano AL, et al.; ESC Scientific Document Group. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the task force for the management of dyslipidaemias of the European society of cardiology (ESC) and European atherosclerosis society (EAS). Eur Heart J 2020; 41: 111–188.
- 44. Hippisley-Cox J, Coupland C and Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. Bmj 2017; 357: j2099.
- 45. Baigent C. Cholesterol treatment trialists' (CTT) collaborators: efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005; 366: 1267–1278.
- 46. Khan SU, Talluri S, Riaz H, et al. A Bayesian network meta-analysis of PCSK9 inhibitors, statins and ezetimibe with or without statins for cardiovascular outcomes. Eur J Prev Cardiol 2018; 25: 844–853.
- 47. Koskinas KC, Siontis GC, Piccolo R, et al. Effect of statins and non-statin LDL-lowering medications on cardiovascular outcomes in secondary prevention: a meta-analysis of randomized trials. Eur Heart J 2018; 39: 1172–1180.
- 48. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 2018; 379: 2097–2107.
- 49. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl JMed 2017; 376: 1713–1722.
- 50. Stoekenbroek RM, Kallend D, Wijngaard PL, et al. Inclisiran for the treatment of cardiovascular disease: the ORION clinical development program. Future Cardiol 2018; 14: 433–442.
- 51. Han BH, Sutin D, Williamson JD, et al.; ALLHAT Collaborative Research Group. Effect of statin treatment vs usual care on primary cardiovascular prevention among older adults: the ALLHAT-LLT randomized clinical trial. JAMA Intern Med 2017; 177: 955–965.
- 52. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002; 360: 1623–1630.
- 53. Ridker PM, Lonn E, Paynter NP, et al. Primary prevention with statin therapy in the elderly: new metaanalyses from the contemporary JUPITER and HOPE-3 randomized trials. Circulation 2017; 135: 1979–1981.
- 54. Forouzanfar MH, Liu P, Roth GA, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015. JAMA 2017; 317: 165–182.

- 55. Danaei G, Ding EL, Mozaffarian D, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med 2009; 6: e1000058.
- 56. Lewington S, Clarke R, Qizilbash N, et al.; Prospective Studies Collaboration. Prospective studies collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–1913.
- 57. Vishram JK, Borglykke A, Andreasen AH, et al. Impact of age on the importance of systolic and diastolic blood pressures for stroke risk: the Monica, Risk, Genetics, Archiving, and Monograph (MORGAM) Project. Hypertension 2012; 60: 1117–1123.
- 58. Asia Pacific Cohort Studies Collaboration. Blood pressure and cardiovascular disease in the Asia pacific region. J Hypertens 2003; 21: 707–716.
- 59. Brown DW, Giles WH and Greenlund KJ. Blood pressure parameters and risk of fatal stroke, NHANES II mortality study. Am J Hypertens 2007; 20: 338–341.
- 60. Williams B, Mancia G, Spiering W, et al.; ESC Scientific Document Group. 2018 ESC/ESH guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European society of cardiology (ESC) and the European society of hypertension (ESH. Eur Heart J 2018; 39: 3021–3104.
- 61. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/ NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American college of cardiology/ American heart association task force on clinical practice guidelines. J Am Coll Cardiol 2018; 71: e127–e248.
- 62. Parati G, Stergiou G, O'Brien E, et al.; European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. European society of hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens 2014; 32: 1359–1366.
- 63. OaeTMBrien E, Parati G, Stergiou G, et al. European society of hypertension position paper on ambulatory blood pressure monitoring. J Hypertens 2013; 31: 1731–1768.
- 64. Brunstr€om M and Carlberg B. Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels: a systematic review and meta-analysis. JAMA Intern Med 2018; 178: 28–36.
- 65. Lonn EM, Bosch J, Lopez-Jaramillo P, et al.; HOPE-3 Investigators. Blood-pressure lowering in intermediaterisk persons without cardiovascular disease. N Engl J Med 2016; 374: 2009–2020.
- 66. Law MR, Morris JK and Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. Bmj 2009; 338: b1665.
- 67. Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387: 957–967.
- 68. Thomopoulos C, Parati G and Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence. 12. Effects in individuals with high-normal and normal blood pressure: overview and meta-analyses of randomized trials. J Hypertens 2017; 35: 2150–2160.
- 69. SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 2015; 373: 2103–2116.

- 70. Tervahauta M, Pekkanen J, Enlund H, et al. Change in blood pressure and 5-year risk of coronary heart disease among elderly men: the Finnish cohorts of the seven countries study. J Hypertens 1994; 12: 1183–1189.
- 71. Dorresteijn JA, van der Graaf Y, Spiering W, et al. Relation between blood pressure and vascular events and mortality in patients with manifest vascular disease: J-curve revisited. Hypertension 2012; 59: 14–21.
- 72. Kang YY and Wang JG. The J-Curve phenomenon in hypertension. Pulse (Basel) 2016; 4: 49–60.
- 73. Bundy JD, Li C, Stuchlik P, et al. Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis. JAMA Cardiol 2017; 2: 775–781.
- 74. Wald DS, Law M, Morris JK, et al. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am J Med 2009; 122: 290–300.
- 75. Wiysonge CS, Bradley HA, Volmink J, et al. Betablockers for hypertension. Cochrane Datab Syst Rev 2017; 1(1).
- 76. King P, Peacock I and Donnelly R. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol 1999; 48: 643–648.
- 77. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560–2572.
- 78. Kirkman MS, Mahmud H and Korytkowski MT. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes mellitus. Endocrinol Metab Clin North Am 2018; 47: 81–96.
- 79. Herman ME, O'Keefe JH, Bell DS, et al. Insulin therapy increases cardiovascular risk in type 2 diabetes. Prog Cardiovasc Dis 2017; 60: 422–434.
- 80. Genuth S. Exogenous insulin administration and cardiovascular risk in non-insulin-dependent and insulin dependent diabetes mellitus. Ann Intern Med 1996; 124: 104–109.
- 81. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380: 347–357.
- 82. Salsali A, Kim G, Woerle H, et al. Cardiovascular safety of empagliflozin in patients with type 2 diabetes: a meta-analysis of data from randomized placebo-controlled trials. Diabetes Obes Metab 2016; 18: 1034–1040.
- 83. Ali A, Bain S, Hicks D, et al.; as part of The Improving Diabetes Steering Committee. SGLT2 inhibitors: cardiovascular benefits beyond HbA1c translating evidence into practice. Diabetes Ther 2019; 10: 1623–1628.
- 84. Arnott C, Li Q, Kang A, et al. Sodium-glucose cotransporter 2 inhibition for the prevention of cardiovascular events in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. JAHA 2020; 9: e014908.
- 85. Sheahan KH, Wahlberg EA and Gilbert MP. An overview of GLP-1 agonists and recent cardiovascular outcomes trials. Postgrad Med J 2020; 96: 156–161.
- 86. Cosentino F, Grant PJ, Aboyans V, et al.; ESC Scientific Document Group. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the task force for diabetes, pre-diabetes, and cardiovascular diseases of the European society of cardiology (ESC) and the European association for the study of diabetes (EASD. Eur Heart J 2020; 41: 255–323.

- 87. Roshandel G, Khoshnia M, Poustchi H, et al. Effectiveness of polypill for primary and secondary prevention of cardiovascular diseases: a pragmatic cluster randomized controlled trial. 2019; 394(10199): 672–683.
- 88. Munoz D, Uzoije P, Reynolds C, et al. Polypill for cardiovascular disease prevention in an underserved population. N Engl J Med 2019; 381: 1114–1123.
- 89. McNeil JJ, Wolfe R, Woods RL, et al. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N Engl J Med 2018; 379: 1509–1518.
- 90. Gaziano JM, Brotons C, Coppolecchia R, et al. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial. Lancet 2018; 392: 1036–1046.
- 91. Bowman L, Mafham M, Wallendszus K, et al. Effects of aspirin for primary prevention in persons with diabetes mellitus: the ASCEND study collaborative group. J Vasc Surg 2019; 69: 305.
- 92. Karunathilake SP, Ganegoda GU. Secondary Prevention of Cardiovascular Diseases and Application of Technology for Early Diagnosis. Biomed Res Int. 2018;2018:5767864.